CERTIFICATE OF ANALYSIS

PRODUCT NAME: CBD 1 oz Salve

PRODUCT STRENGTH: 500 mg

LOT NUMBER: <u>T325</u> BEST BY DATE: 06/2021

HEMP EXTRACT LOT JP090319B7

Click on the links to view third-party reports

Physical Atttributes

Test	Method	Specification	Results
Color	SOP-100	Light off white to yellow opaque, hint of green	PASS
Odor	SOP-100	Lavender, eucalyptus, hint of beeswax and coconut	PASS
Appearance	SOP-100	Firm, semi-waxy salve in container with screw lid	PASS
Primary Package Eval.	SOP-132	Container clean and free of filth. Container caps tight and pressure seal intact	PASS
Secondary Package Eval.	SOP-132	Labeling Compliance Checked, Cartons sturdy and clean. Sufficient cushion material exists. Box taped and secure.	PASS

Review of Third-Party Analysis

Panel	Method	Specification	Results*	Pass/Fail
Potency - Total CBD	SOP-111	475-625 mg CBD LOQ**: 10 PPM† (0.001%)	530.8	PASS
Potency - D9-THC	SOP-111	None Detected LOQ: 10 PPM (0.001%)	<u>ND</u>	PASS
FL Compliant Pesticide Panel	SOP-111	Florida State Hemp Program Rule 5B-57.014: Action Limits for Pesticides	<u>ND</u>	PASS
Microbial - Stec E.Coli	SOP-111	Complies with USP 61/62	> <u>LOD</u>	PASS
Microbial - Salmonella	SOP-111	Complies with USP 61/62	> <u>LOD</u>	PASS
Microbial - Aspergillus	SOP-111	Complies with USP 61/62	> <u>LOD</u>	PASS
CA Compliant Heavy Metal Panel	SOP-111	Arsenic (As): ≤1.5 PPM Cadmium (Cd): ≤0.5 PPM Mercury (Hg): ≤1.0 PPM Lead (Pb): ≤0.5 PPM	> <u>LOQ</u>	PASS

^{* *}Level of Quantitation, † Parts Per Million

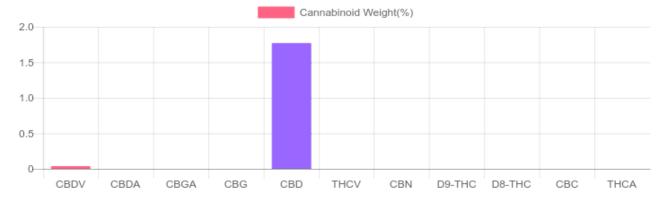
Quality Certified by:			
	Darcie Moran	Date	
	Manager of Ouality Assurance		

CERTIFICATE OF ANALYSIS ISO/IEC 17025:2017 ACCREDITATION #103104

Order #: 47132 Order Name: S10Z500-T325 Batch#: 010242019 Received: 01/23/2020 Completed: 01/29/2020

Sample

N/D D9-THC 1.770% Total CBD


530.8 mg Cannabinoids per jar 519.6 mg CBD per jar

1 jar = 29.35 grams per jar x Cannabinoid concentration

Cannabinoids Test

SHIMADZU INTEGRATED UPLC-PDA

GSL SOP 400	PREPARED: 01/	/23/2020 15:11:57	57 UPLOADED: 01/24/2020 12:14			
Cannabinoids	LOQ	weight(%)	mg/g	mg/jar		
D9-THC	10 PPM	N/D	N/D	N/D		
THCA	10 PPM	N/D	N/D	N/D		
CBD	10 PPM	1.770%	17.704	519.6		
CBDA	20 PPM	N/D	N/D	N/D		
CBDV	20 PPM	0.038%	0.382	11.2		
CBC	10 PPM	N/D	N/D	N/D		
CBN	10 PPM	N/D	N/D	N/D		
CBG	10 PPM	N/D	N/D	N/D		
CBGA	20 PPM	N/D	N/D	N/D		
D8-THC	10 PPM	N/D	N/D	N/D		
THCV	10 PPM	N/D	N/D	N/D		
TOTAL D9-THC		N/D	N/D	N/D		
TOTAL CBD*		1.770%	17.704	519.6		
TOTAL CANNABINOIDS		1.808%	18.086	530.8		

Reporting Limit 10 ppm
*Total CBD = CBD + CBDA x 0.877
N/D - Not Detected, B/LOQ - Below Limit of Quantification

Dr. Andrew Hall, Ph.D., Chief Scientific Officer

Ben Witten, MS, MT., Lab Director

Green Scientific Labs info@greenscientificlabs.com 1-833 TEST CBD

Green Scientific Labs uses its best efforts to deliver high quality results and to verify that the data contained therein are based on sound scientific judgment and levels listed are guidelines only and all data was reported based on standard laboratory procedures and deviations. However Green Scientific Labs makes no warranties or claims to that effect and further shall not be liable for any damage or misrepresentation that may result from the use or misuse of the data contained herein in any way. Further, Green Scientific Labs makes no claims regarding representations of the analyzed sample to the larger batch from which it was taken. Data and information in this report are intended solely for the individual(s) for whom samples were submitted and as part of our strict confidentiality policy, Green Scientific Labs can only discuss results with the original client of record.

CERTIFICATE OF ANALYSIS ISO/IEC 17025:2017 ACCREDITATION #103104

Order #: 47132 Order Name: S10Z500-T325 Batch#: 010242019 Received: 01/23/2020 Completed: 01/29/2020

Microbial Analysis:

Microbial Analysis GSL SOP 406

Uploaded: 01/28/2020 20:16:45

PCR - Agilent AriaMX Test	Test Method Used	Device Used	LOD	Allowable Criteria	Actual Result	Pass/Fail
STEC E.COLI*	USP 61/62†	ARIAMX PCR	2 COPIES OF DNA	PRESENCE / ABSENT	BELOW LOD	PASS
SALMONELLA*	USP 61/62†	ARIAMX PCR	5 COPIES OF DNA	PRESENCE / ABSENT	BELOW LOD	PASS
ASPERGILLUS	USP 61/62†	ARIAMX PCR	ASP_LOD***	PRESENCE / ABSENT	BELOW LOD	PASS

[†] USP 61 (enumeration of bacteria TAC, TYM, and ENT/Coliform), USP 62 (identifying specific species E.coli Aspergillus etc)

Mm Hall

Dr. Andrew Hall, Ph.D., Chief Scientific Officer

Bul

Ben Witten, MS, MT., Lab Director

Green Scientific Labs info@greenscientificlabs.com 1-833 TEST CBD

Green Scientific Labs uses its best efforts to deliver high quality results and to verify that the data contained therein are based on sound scientific judgment and levels listed are guidelines only and all data was reported based on standard laboratory procedures and deviations. However Green Scientific Labs makes no warranties or claims to that effect and further shall not be liable for any damage or misrepresentation that may result from the use or misuse of the data contained herein in any way. Further, Green Scientific Labs makes no claims regarding representations of the analyzed sample to the larger batch from which it was taken. Data and information in this report are intended solely for the individual(s) for whom samples were submitted and as part of our strict confidentiality policy, Green Scientific Labs can only discuss results with the original client of record.

^{*} STEC and Salmonella run as Multiplex

^{***} Flavus = 2 Copies of DNA / Fumigatis = 2 Copies of DNA Niger = 20 Copies of DNA / Terrus = 10 copies of DNA

CERTIFICATE OF ANALYSIS ISO/IEC 17025:2017 ACCREDITATION #103104

Order #: 47132 Order Name: S1OZ500-T325 Batch#: 010242019 Received: 01/23/2020 Completed: 01/29/2020

Heavy Metals Analysis:

ICP-MS - Shimadzu ICPMS-2030 GSL SOP 403

Uploaded: 01/24/2020 18:17:21

Metal	Action Level (ppb)	Result (ppb)
ARSENIC (AS)	200	B/LOQ
CADMIUM (CD)	200	B/LOQ
MERCURY (HG)	100	B/LOQ
LEAD (PB)	500	B/LOQ

Lower Limit of Quantitation (LOQ) is 75 ppb

Dr. Andrew Hall, Ph.D., Chief Scientific Officer

Ben Witten, MS, MT., Lab Director

Green Scientific Labs info@greenscientificlabs.com 1-833 TEST CBD

Green Scientific Labs uses its best efforts to deliver high quality results and to verify that the data contained therein are based on sound scientific judgment and levels listed are guidelines only and all data was reported based on standard laboratory procedures and deviations. However Green Scientific Labs makes no warranties or claims to that effect and further shall not be liable for any damage or misrepresentation that may result from the use or misuse of the data contained herein in any way. Further, Green Scientific Labs makes no claims regarding representations of the analyzed sample to the larger batch from which it was taken. Data and information in this report are intended solely for the individual(s) for whom samples were submitted and as part of our strict confidentiality policy, Green Scientific Labs can only discuss results with the original client of record.

https://portal.a2la.org/scopepdf/4961-01.pdf

Sample Handling

sample date 2/6/20 2:50 PM order **6527** labID 0BE46 weight 28.4 g source

Methods method equipment MSP-7.3.1.3 weights AUX120.1 potency MSP-7.5.1.5 LC-2030 terpenes MSP-7.5.1.7 QP2020/HS20 pesticides MSP-7.5.1.8 LC-8060 mycotoxins MSP-7.5.1.8 LC-8060 MSP-7.5.1.9 microbial Hardy Diag solvents MSP-7.5.1.6 QP2020/HS20 metals MSP-7.5.1.10 ICPMS2030

estimated error estimated error estimated estimated Potency Terpenes

potency not tested

terpenes not tested / not required

Solvents	MT limit	0BE46	LOQ	Pesticides (MT)	MT limit	0BE46	LOQ	Pesticides (other)	0BE46	LOQ
				abamectin		0.00 ppm	<10ppb	acephate	0.00 ppm	<10ppl
				acequinocyl		0.00 ppm	<10ppb	acetamiprid	0.00 ppm	<10ppl
				bifenazate		0.00 ppm	<10ppb	aldicarb	0.00 ppm	<10ppl
				bifenthrin		0.00 ppm	<10ppb	azoxystrobin	0.00 ppm	<10ppl
solve	ents			chlormequat cl.		0.00 ppm	<10ppb	boscalid	0.00 ppm	<10ppl
				cyfluthrin		0.00 ppm	<80ppb	carbaryl	0.00 ppm	<10pp
not t	ested / not	required		diaminozide		0.00 ppm	<10ppb	carbofuran	0.00 ppm	<10pp
				etoxazole		0.00 ppm	<10ppb	chloantraniliprole	0.00 ppm	<10pp
				fenoxycarb		0.00 ppm	<10ppb	chlorpyrifos	0.00 ppm	<10pp
				imazalil		0.00 ppm	<10ppb	clofentezine	0.00 ppm	<10pp
				imidacloprid		0.00 ppm	<10ppb	cypermethrin	0.00 ppm	<10ppl
				myclobutanil		0.00 ppm	<10ppb	diazinon	0.00 ppm	<10pp
				paclobutrazol		0.00 ppm	<10ppb	dichlorvos	0.00 ppm	<10pp
				pyrethrins		0.00 ppm	<10ppb	dimethoate	0.00 ppm	<10pp
				spinosad		0.00 ppm	<10ppb	etofenprox	0.00 ppm	<10pp
				spiromesifen		0.00 ppm	<10ppb	fenpyroximate	0.00 ppm	<10pp
Tavia Matala				spirotetramat		0.00 ppm	<10ppb	fipronil	0.00 ppm	<10pp
Toxic Metals	MT limit OBE	E46 LOC)	trifloxystrobin		0.00 ppm	<10ppb	flonicamid	0.00 ppm	<10pp
				•				fludioxonil	0.00 ppm	<10pp
metal	S			Misushial				hexythiazox	0.00 ppm	<10pp
		o autiro d		Microbial	MT limit	0BE46	LOQ	kresoxym-methyl	0.00 ppm	<10pp
not te	sted / not r	equirea						malathion	0.00 ppm	<10pp
				mici	obial no	t tastar	l	metalaxyl	0.00 ppm	<10pp
Comments				IIIICI	Oblai IIC	i icsicc		methiocarb	0.00 ppm	<10ppl
				Aflatoxin B1,B2,G1,G2	20 ppb	U ppb	<20 ppb	methomyl	0.00 ppm	<10pp
				Ochratoxin A	20 ppb	0 ppb	<20 ppb	oxamyl	0.00 ppm	<10pp
					ZO PPD		CEO PPD	permethrins	0.00 ppm	<10pp
								phosmet	0.00 ppm	<10pp
								piperonyl butoxide	0.00 ppm	<10pp
 ΔII testing was 	completed one	site at 6073	HEOSH	Olney MT · · Potency	Certified b			prallethrin	0.00 ppm	<10pp
(cannabinoid cor	ncentration) is o	calcuated from	om the e	equation: [cannabioid] =	Oer tilled t	у.		propiconazole	0.00 ppm	<10pp
[cannabinoid] _{HPLC}	x volume _{dilution} /n	n _{dry} . Terpen	e concen	tration is calcuated from		1/		pyridaben	0.00 ppm	<10pp
the equation: [t	erpene] = (ter	pene mass) _{GCMS} /	m _{dry} . ••• Decarboxyted	1	/_		spiroxamine	0.00 ppm	<10pp
				ation XXX _{total} = 0.877 x	1			tebuconazole	0.00 ppm	<10ppl
				the resulting data and od; this is combined with	Kyle Lars	on, MSc (B	iology)	thiacloprid	0.00 ppm	<10ppl
Commune Circle us	ing a standard c	Similate of e	TOT THE LIT	oa, tino io combinea with	Doputy Direc	,	577		0.00 pp	~ 10ppi

estimate error using a standard estimate of error method; this is combined with error from weighing and dilution using the propagation of error formula s_g^2 = $\sum (\partial f/\partial i)^2 s_i^2$ where i is the contributor to error. The 95% confidence range is calculated from the equation: (concentration) $\pm t_{CL90} \times s_g$. Sampling error is not

Kyle Larson, MSc (Biology) Deputy Director 6073 US93N, Olney MT 59927 406-881-2019 rdb@stwlabs.com

Printed 2/9/2020 12:44 PM

thiamethoxam

0.00 ppm <10ppb

Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/19 10:52

Product identity: JP090319B7 Client/Metrc ID: Laboratory ID: 19-012757-0002 Sample Date:

Summary

Potency:

Analyte CBD	Result (%) 81.9	CBD-Total 81.9%	
CBDV [†]	1.86	THC-Total < 0.17' CBD CBD (Reported in percent of total sair	
		CBDV (Reported in percent of total sar	mple)

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Terpenes:

Analyte	Percent by weight	Percent of Total	Analyte	Percent by weight	Percent of Total
(-)-Guaiol†	0.619	35.17%	(-)-caryophyllene oxide†	0.511	29.03%
B-Caryophyllene†	0.450	25.57%	Humulene†	0.0795	4.52%
Linalool†	0.0594	3.38%	(-)-a-Terpineol [†]	0.0411	2.34%
Total Terpenes [†]	1.76	100.00%			

Metals:

Analyte	Result Limits
rsenic	0.0713

Microbiology:

Less than LOQ for all analytes.

Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/19 10:52

Customer: My CBD Test

Product identity: JP090319B7

Client/Metrc ID:

Sample Date:

Laboratory ID: 19-012757-0002

Relinquished by: UPS Temp: $23.4 \,^{\circ}\text{C}$

Sample Results

Potency	Method J AOA	C 2015 V9	8-6		Units %	Batch 1909717	Analyze 10/22/19 05:04 PM
Analyte	As	•	LOQ	Notes			
	Received	weight					
CBC [†]	< LOQ		0.0943				
CBC-A [†]	< LOQ		0.0943				
CBC-Total†	< LOQ		0.177				• CBD
CBD	81.9		0.943				
CBD-A	< LOQ		0.0943				• CBDV
CBD-Total	81.9		1.03				
CBDV [†]	1.86		0.0943				
CBDV-A [†]	< LOQ		0.0943				
CBDV-Total†	1.86		0.176				
CBG [†]	< LOQ		0.0943				
CBG-A [†]	< LOQ		0.0943				
CBG-Total [†]	< LOQ		0.176				
CBL [†]	< LOQ		0.0943				
CBN	< LOQ		0.0943				
$\Delta 8\text{-THC}^{\dagger}$	< LOQ		0.0943				
Δ9-THC	< LOQ		0.0943				
THC-A	< LOQ		0.0943				
THC-Total	< LOQ		0.177				
THCV [†]	< LOQ		0.0943				
THCV-A [†]	< LOQ		0.0943				
THCV-Total†	< LOQ		0.176				

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
E.coli	< LOQ		cfu/g	10	1909486	10/21/19	AOAC 991.14 (Petrifilm)	Χ
Total Coliforms	< LOQ		cfu/g	10	1909486	10/21/19	AOAC 991.14 (Petrifilm)	Χ
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	1909487	10/21/19	AOAC 2014.05 (RAPID)	X
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	1909487	10/21/19	AOAC 2014.05 (RAPID)	X

Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

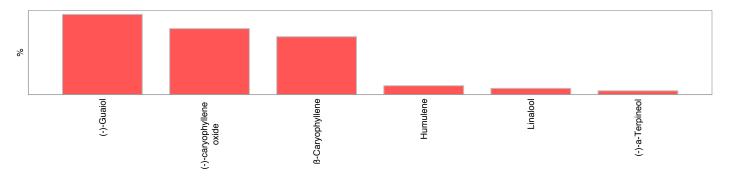
Solvents	Method	EPA502	21A			Units μg/g Batch 19	909460	Analyz	e 10/2	23/19 0	2:28 PM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	<loq< td=""><td>380</td><td>100</td><td>pass</td><td></td><td>2-Butanol</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	380	100	pass		2-Butanol	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	<loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<>	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	<loq< td=""><td>5000</td><td>400</td><td>pass</td><td></td></loq<>	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	<loq< td=""><td>50.0</td><td>30.0</td><td>pass</td><td></td></loq<>	50.0	30.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Isopropylbenzene	< LOQ	70.0	30.0	pass		m,p-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	<loq< td=""><td>600</td><td>200</td><td>pass</td><td></td></loq<>	600	200	pass	
Methylpropane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>n-Butane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			n-Butane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
n-Heptane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td><td>n-Hexane</td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>	5000	200	pass		n-Hexane	<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
n-Pentane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>o-Xylene</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			o-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Pentanes (sum)	<loq< td=""><td>5000</td><td>600</td><td>pass</td><td></td><td>Propane</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	5000	600	pass		Propane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Tetrahydrofuran	<loq< td=""><td>720</td><td>100</td><td>pass</td><td></td><td>Toluene</td><td><loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<></td></loq<>	720	100	pass		Toluene	<loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<>	890	100	pass	
Total Xylenes	<loq< td=""><td></td><td>400</td><td></td><td></td><td>Total Xylenes and Ethyl</td><td><loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<></td></loq<>		400			Total Xylenes and Ethyl	<loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<>	2170	600	pass	

Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Pesticides	Method	AOAC	2007.01 & EN	15662 (mod)	Units mg/kg Ba	tch 1909507	Analy	ze 10/21/19 09:49 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin	<loq< td=""><td>0.50</td><td>0.250 pass</td><td></td><td>Acephate</td><td><loq< td=""><td>0.40</td><td>0.250 pass</td></loq<></td></loq<>	0.50	0.250 pass		Acephate	<loq< td=""><td>0.40</td><td>0.250 pass</td></loq<>	0.40	0.250 pass
Acequinocyl	<loq< td=""><td>2.0</td><td>1.00 pass</td><td></td><td>Acetamiprid</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	2.0	1.00 pass		Acetamiprid	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Aldicarb	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Azoxystrobin</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass		Azoxystrobin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Bifenazate	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Bifenthrin</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Bifenthrin	< LOQ	0.20	0.100 pass
Boscalid	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Carbaryl</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass		Carbaryl	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Carbofuran	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Chlorantraniliprole</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Chlorantraniliprole	< LOQ	0.20	0.100 pass
Chlorfenapyr	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Chlorpyrifos</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	1.0	0.500 pass		Chlorpyrifos	< LOQ	0.20	0.100 pass
Clofentezine	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Cyfluthrin</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Cyfluthrin	< LOQ	1.0	0.500 pass
Cypermethrin	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Daminozide</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass		Daminozide	< LOQ	1.0	0.500 pass
Diazinon	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Dichlorvos</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Ethoprophos</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Etoxazole</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Fenpyroximate</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Flonicamid</td><td>< LOQ</td><td>1.0</td><td>0.400 pass</td></loq<>	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Hexythiazox</td><td>< LOQ</td><td>1.0</td><td>0.400 pass</td></loq<>	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
lmazalil	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Imidacloprid</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Malathion</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Methiocarb</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Methiocarb	< LOQ	0.20	0.100 pass
Methomyl	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>MGK-264</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.40	0.200 pass		MGK-264	< LOQ	0.20	0.100 pass
Myclobutanil	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Naled</td><td>< LOQ</td><td>0.50</td><td>0.250 pass</td></loq<>	0.20	0.100 pass		Naled	< LOQ	0.50	0.250 pass
Oxamyl	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Paclobutrazole</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	1.0	0.500 pass		Paclobutrazole	< LOQ	0.40	0.200 pass
Parathion-Methyl	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Permethrin</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.200 pass		Permethrin	< LOQ	0.20	0.100 pass
Phosmet	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Piperonyl butoxide</td><td>< LOQ</td><td>2.0</td><td>1.00 pass</td></loq<>	0.20	0.100 pass		Piperonyl butoxide	< LOQ	2.0	1.00 pass
Prallethrin	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Propiconazole</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Pyrethrin I (total)</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Pyrethrin I (total)	< LOQ	1.0	0.500 pass
Pyridaben	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Spinosad</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Spinosad	< LOQ	0.20	0.100 pass
Spiromesifen	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Spirotetramat</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Tebuconazole</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Thiamethoxam</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td></td><td></td><td></td><td></td></loq<>	0.20	0.100 pass					

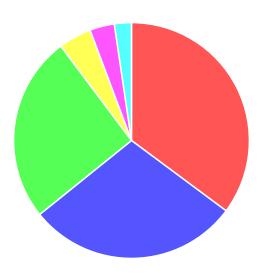


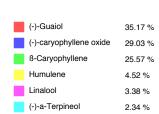
Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Terpenes	Method	J AOAC	2015 V98-6		Units % Batch 1	909461	Analy	ze 10/18/19	12:07 PM
Analyte	Result	LOQ	% of Total	Notes	Analyte	Result	LOQ	% of Total	Notes
(-)-Guaiol†	0.619	0.020	35.17%		(-)-caryophyllene oxide†	0.511	0.020	29.03%	
B-Caryophyllene†	0.450	0.020	25.57%		Humulene [†]	0.0795	0.020	4.52%	
Linalool†	0.0594	0.020	3.38%		(-)-a-Terpineol†	0.0411	0.020	2.34%	
(-)-Isopulegol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(-)-ß-Pinene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		(-)-ß-Pinene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
(+)-Borneol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(+)-Cedrol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		(+)-Cedrol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
(+)-fenchol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(+)-Pulegone[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		(+)-Pulegone [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
(±)-Camphor [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(±)-cis-Nerolidol†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		(±)-cis-Nerolidol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
(±)-fenchone [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(±)-trans-Nerolidol†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		(±)-trans-Nerolidol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
(R)-(+)-Limonene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-BisaboloI[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		a-BisaboloI [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
a-cedrene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-phellandrene†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		a-phellandrene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
a-pinene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-Terpinene†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		a-Terpinene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
Camphene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>cis-ß-Ocimene†</td><td><loq< td=""><td>0.006</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		cis-ß-Ocimene†	<loq< td=""><td>0.006</td><td>0.00%</td><td></td></loq<>	0.006	0.00%	
d-3-Carene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Eucalyptol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		Eucalyptol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
farnesene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>gamma-Terpinene†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		gamma-Terpinene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
Geraniol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Geranyl acetate†</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		Geranyl acetate†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
Isoborneol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Menthol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		Menthol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
nerol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>p-Cymene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		p-Cymene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
Sabinene [†]	< LOQ	0.020	0.00%		Sabinene hydrate†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
B-Myrcene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Terpinolene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<></td></loq<>	0.020	0.00%		Terpinolene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
trans-ß-Ocimene†	< LOQ	0.013	0.00%		valencene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td></loq<>	0.020	0.00%	
Total Terpenes	1.76								





Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	0.0713		mg/kg	0.0379	1909726	10/25/19	AOAC 2013.06 (mod.)	Χ
Cadmium	<loq< td=""><td></td><td>mg/kg</td><td>0.0379</td><td>1909726</td><td>10/25/19</td><td>AOAC 2013.06 (mod.)</td><td>X</td></loq<>		mg/kg	0.0379	1909726	10/25/19	AOAC 2013.06 (mod.)	X
Lead	<loq< td=""><td></td><td>mg/kg</td><td>0.0379</td><td>1909726</td><td>10/25/19</td><td>AOAC 2013.06 (mod.)</td><td>X</td></loq<>		mg/kg	0.0379	1909726	10/25/19	AOAC 2013.06 (mod.)	X
Mercury	<loq< td=""><td></td><td>mg/kg</td><td>0.0190</td><td>1909726</td><td>10/25/19</td><td>AOAC 2013.06 (mod.)</td><td>X</td></loq<>		mg/kg	0.0190	1909726	10/25/19	AOAC 2013.06 (mod.)	X

Report Number: 19-012757/D02.R00

Report Date: 10/28/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 10/18/19 10:52

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram

 μ g/g = Microgram per gram

mg/kg = Milligram per kilogram = parts per million (ppm)

% = Percentage of sample

% wt = μ g/g divided by 10,000

Glossary of Qualifiers

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager